segunda-feira, 21 de novembro de 2016

Sistema de Equação e Ângulos na Circunferência ( 8° Ano)

1-João gosta muito de animais de estimação e de charadas. Certo dia um amigo perguntou-lhe quantos cachorros e quantos gatos ele tinha. Prontamente João respondeu com o seguinte enigma: “A soma do dobro do número de cachorros e do triplo do número de gatos é igual a 17. E a diferença entre o número de cachorros e de gatos é apenas 1”. Será que você consegue desvendar esse enigma e descobrir quantos cachorros e quantos gatos João possui?


De início, vamos interpretar algebricamente o enigma de João. Para isso, identificaremos o número de gatos como g e o número de cachorros como c. Se “a soma do dobro do número de cachorros e do triplo do número de gatos é igual a 17”, chegamos a:
2 · c + 3 · g = 17
E se “a diferença entre o número de cachorros e de gatos é apenas 1”, podemos concluir que:
c – g = 1
Com as equações encontradas, podemos montar o seguinte sistema:
Para resolver esse sistema pelo método da adição, multiplicaremos todos os termos da segunda equação por 3 e somaremos as equações:

5 · c + 0 · g = 20
5 · c = 20
c = 20
      5
c = 4
Substituindo c = 4 em c – g = 1, teremos:
c – g = 1
4 – g = 1
– g = 1 – 4
(– 1) · (– g) = (– 3) · (– 1)
g = 3
Podemos concluir que João possui três gatos e quatro cachorros.

2-Em sua rua, André observou que havia 20 veículos estacionados, dentre motos e carros. Ao abaixar-se, ele conseguiu visualizar 54 rodas. Qual é a quantidade de motos e de carros estacionados na rua de André?

Se identificarmos a quantidade de motos com a incógnita m e a quantidade de carros com a incógnita c, podemos afirmar que a equação m + c = 20 é válida.
Sabendo que cada moto possui 2 rodas e cada carro, 4, podemos montar ainda outra equação: · m + 4 · c = 54. Organizando-as em um sistema de equações, teremos:
Para resolver esse sistema através do método da substituição, isolaremos m na primeira equação, substituindo-o na segunda:
m + c = 20
m = 20 – c
2 · m + 4 · c = 54
2 · (20 – c) + 4 · c = 54
40 – 2 · c + 4 · c = 54
– 2 · c + 4 · c = 54 – 40
2 · c = 14
c = 14
      2
c = 7
Substituindo c = 7 em m = 20 – c, teremos:
m = 20 – c
m = 20 – 7
m = 13
Portanto, há treze motos sete carros estacionados na rua de André.

3-(Fuvest) Um supermercado adquiriu detergentes nos aromas limão e coco. A compra foi entregue, embalada em 10 caixas, com 24 frascos em cada caixa. Sabendo-se que cada caixa continha 2 frascos de detergentes a mais no aroma limão do que no aroma coco, o número de frascos entregues, no aroma limão, foi:
a) 110
b) 120
c) 130
d) 140
e) 150
De acordo com o enunciado, as caixas contêm detergentes no aroma limão e no aroma coco. Representaremos suas quantidades com as variáveis L e C, respectivamente. Nós sabemos que, somando as quantidades dos dois aromas em uma caixa, teremos um total de 24 detergentes, isto é, L + C = 24. Sabemos ainda que cada caixa contém dois detergentes de limão a mais do que de coco, logo, L = C + 2. Reorganizando essa equação, teremos: L – C = 2.
Com as equações identificadas, podemos montar um sistema que resolveremos pelo método da adição:

2 · L + 0 · C = 26
2 · L = 26
L = 26
      2
L = 13
Cada caixa continha 13 frascos de detergente aroma limão. Mas como foram estregues 10 caixas com essa mesma quantidade (13 · 10 = 130), o supermercado adquiriu 130 frascos de detergente aroma limão. A resposta correta é a letra c.


4-A população de uma cidade A é três vezes maior que a população da cidade B. Somando a população das duas cidades temos o total de 200.000 habitantes. Qual a população da cidade A? 

Cidade A = x 
Cidade B = y 

x = 3y 
x + y = 200 000 

Substituindo x = 3y 

x + y = 200 000 
3y + y = 200 000 
4y = 200 000 
y = 200 000/4 
y = 50 000 
x = 3y , substituindo y = 50 000 

Temos 
x = 3 * 50 000 
x = 150 000 

População da cidade A = 150 000 habitantes 
População da cidade B = 50 000 habitantes 



5-Cláudio usou apenas notas de R$ 20,00 e de R$ 5,00 para fazer um pagamento de R$ 140,00. Quantas notas de cada tipo ele usou, sabendo que no total foram 10 notas? 

x notas de 20 reais y notas de 5 reais

Equação do número de notas: x + y = 10
Equação da quantidade e valor das notas: 20x + 5y = 140

x + y = 10
20x + 5y = 140

Aplicar método da substituição

Isolando x na 1ª equação
x + y = 10
x = 10 - y 
Substituindo o valor de x na 2ª equação
20x + 5y = 140
20(10 – y) + 5y = 140
200 – 20y + 5y = 140
- 15y = 140 – 200
- 15y = - 60 (multiplicar por -1)
15y = 60
y = 60/15
y = 4

Substituindo y = 4
x = 10 – 4
x = 6


6-Num aquário há 8 peixes, entre pequenos e grandes. Se os pequenos fossem mais um, seria o dobro dos grandes. Quantos são os pequenos? E os grandes? 

Pequenos: x 
Grandes: y 

x + y = 8 
x + 1 = 2y 

Isolando x na 1ª equação 

x + y = 8 
x = 8 - y 

Substituindo o valor de x na 2ª equação 
x + 1 = 2y 
(8 – y) + 1 = 2y 
8 – y + 1 = 2y 
9 = 2y + y 
9 = 3y 
3y = 9 
y = 9/3 
y = 3 

Substituindo y = 3 
x = 8 – 3 
x = 5 

Peixes pequenos: 5 
Peixes grandes: 3 

7-Descubra quais são os dois números em que o dobro do maior somado com o triplo do menor dá 16, e o maior deles somado com quíntuplo do menor dá 1. 

Maior: x
Menor: y

2x + 3y = 16
x + 5y = 1

Isolando x na 2ª equação
x + 5y = 1
x = 1 – 5y

Substituindo o valor de x na 1ª equação
2(1 – 5y) + 3y = 16
2 – 10y + 3y = 16
- 7y = 16 – 2
- 7y = 14 (multiplica por -1)
7y = - 14
y = -14/7
y = - 2
Substituindo y = - 2
x = 1 – 5 (-2)
x = 1 + 10
x = 11

Os números são 11 e -2.
8--Qual o ângulo que possui o vértice no centro da circunferência?


Resposta : Angulo Central 


9-Determine o valor de x nos casos a seguir 


 Imagem


a) x = 59

b) x = 82

obs: O angulo central éo dobro do angulo inscrito na circunferência


10-
Exercicio 2





Nenhum comentário:

Postar um comentário